Boosting as a Metaphor for Algorithm Design

نویسندگان

  • Kevin Leyton-Brown
  • Eugene Nudelman
  • Galen Andrew
  • Jim McFadden
  • Yoav Shoham
چکیده

Hard computational problems are often solvable by multiple algorithms that each perform well on different problem instances. We describe techniques for building an algorithm portfolio that can outperform its constituent algorithms, just as the aggregate classifiers learned by boosting outperform the classifiers of which they are composed. We also provide a method for generating test distributions to focus future algorithm design work on problems that are hard for an existing portfolio. We demonstrate the effectiveness of our techniques on the combinatorial auction winner determination problem, showing that our portfolio outperforms the state-of-the-art algorithm by a factor of three.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Data Mining Algorithms for Detection of Liver Disease

Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...

متن کامل

Metaphor: a Creative aid in Architectural Design Process

In the developing world, skills in innovation and creative design have emerged as key attributes for graduating designers. Creativity is essential if we want to generate new solutions to the considerable and complex problems in architecture. Metaphor is frequently expressed as a key tool for enhancing creative design, yet little empirical research has been performed on how novice designers can ...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

A NOVEL META-HEURISTIC ALGORITHM: TUG OF WAR OPTIMIZATION

This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions.  The  teams  exert  pulling  forces  on  each  other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003